“Microservices and API Complexity – Inside and Out” on Iasa Global

The signature benefit of a microservice architecture is that its highly granular nature allows for a great deal of flexibility in composing applications. Components are simplified by virtue of a high degree of focus. The ability to replace individual components is enhanced by the modularity inherent in the style.

A very significant drawback to microservice architecture is that its highly granular nature can lead to a great deal of complexity in composing applications. Highly focused components can force service consumers to become more involved in the internals of an interaction than they might otherwise wish. Unwanted options can become more of a source of confusion than useful modularity.

How do you resolve this paradox? See the full post on the Iasa Global Site

Technical Debt and Rolling Re-writes (Who Needs Architects?)

If you think building a system is challenging, try maintaining one.

Tom Cagley‘s recent post “Plan to Throw One Away Re-Read Saturday: The Mythical Man-Month, Part 11”, was a good reminder that while “technical debt” may be something currently on the radar for many, it’s far from a new phenomenon. The concept of instant legacy applications was in place when forty years ago when Frederick Brooks wrote his masterpiece, even if they weren’t called that. As Tom observed in the post:

Rarely is the first attempt useful to the end consumer, and the usefulness of that first attempt is less in the code than in the feedback it generates. Software development is no different. The initial conceptual design and anticipated technical architecture of a large project rarely stands up to the rigors of the discovery process, and those designs should be learned from and then thrown away.

The faulty assumptions and design flaws accumulate not only from sprint to sprint leading up to the initial release, but also from release to release. In spite of the fact that a product can be so seriously flawed, throwing it away and starting over is easier said than done. While sunk costs cannot be recovered, too sanguine an attitude towards them may not enhance your credibility with the customer. Having to pay for the same thing over and over can make them grumpy.

This sets up a dilemma, one that frequently leads to living with technical debt and attempting to incrementally patch it up. There are limits, however, to the number of band-aids that can be applied. This might make it tempting to propose a rewrite, but as Erik Dietrich stated in “The Myth of the Software Rewrite”:

Sure, they know things now that they didn’t know when they started on this code 3 years ago. But won’t the same thing be true in 3 years? Won’t the developers then be looking at the code and saying, “this is a mess — if only we knew in 2015 what we now know in 2018!” And, beyond that, what makes you think that giving the same group of people the same marching orders won’t result in the same kind of code?

The “big rewrite from scratch because this is a mess” is a losing strategy.

Fortunately, there is an alternative. Quoting Tom Cagley again from the same post as above:

If change is both inevitable and good (within limits), then both systems and organizations (a type of system) need to be engineered to support and facilitate change. Architecturally, techniques such as modularization, object-oriented design and other processes that foster simplification and incremental change create an environment in which change isn’t avoided, but rather encouraged.

While we may laugh at the image of changing a tire while the vehicle is in motion, it is an accurate metaphor. Customers expect flexibility and change on the go; waiting equals lost business. The keys to evolving in place are having an intentionally designed, modular architecture and an understanding of where the weaknesses lie. Both of these are concerns that reside squarely on the architect’s plate.

Modularity not only makes an application more easily maintainable via separation of concerns, but it also embraces change by making components replaceable. This is one of the qualities that has made microservices such a hot topic, although it would be a mistake to think that microservices are the only way (or best way in all cases) to achieve modularity.

Modularity brings benefits beyond the purely technical as well. Rewrites of a fraction of an application are more easily sold than big-bang efforts. Demonstrating forethought (while you can’t predict what the change will be, predicting the need for change is more of a sure thing) demonstrates concern for the customer’s welfare, which should make for a better relationship.

Being able to throw a system away a little at a time allows us to keep the car on the road while it changes and adapts to changing conditions.

Who Needs Architects? – Monoliths as Systems of Stuff

Platypus

In my experience, IT is not a “one size fits all” operation. In both their latest two-speed vision and their older three-speed one, Gartner’s opinion is the same – there is no one process that works for every system across the enterprise (for what it’s worth, I agree with Simon Wardley that Bimodal IT is still too restrictive and three modes comes closer to reflecting the types of systems in use). Process and governance that is appropriate to one system may be too strict for another and too loose for a third. In this light, attempting to find one compromise ensures that all are poorly served. Consequently, more than one mode of governance just makes sense.

The problem is more complex, however, than just picking trimodal or bimodal and dividing applications up according to whether they are systems of record, systems of differentiation, or systems of innovation (or digital versus traditional). Just as “accidental architecture” can result in a “Big Ball of Mud” at the application level, it can also do so in terms of enterprise IT architecture. Monoliths that have grown organically may cross boundaries of the multimodal framework taxonomy, essentially becoming incoherent systems of “stuff”. This complicates their assignment to a process that fits their nature. When the application fits more than one category, do you force it into the more restrictive category or the least restrictive? No matter which way you choose, the answer will be problematic.

Given the fractal nature of IT, it should not be a surprise that design decisions made at the level of individual applications can bubble up to affect the IT architecture of the enterprise as a whole. Separation of concerns (logical) and modularity (physical) remain important from the lowest level to the top. Without a strategic direction, tactical excellence can lead to waste from lack of focus.

Monolithic architectures trade simplicity for modularity at the application architecture level, which may be a valid trade at that level. If, however, a monolith crosses framework category boundaries, then major architectural refactoring may be required to avoid making ugly compromises. Separation of concerns within a monolith can ease the pain of this kind of refactoring, but avoidance of the need for refactoring is even more painless. Paying attention to cohesion across all levels of granularity and designing with extra-application as well as intra-application concerns in mind is necessary to achieve this avoidance.

Knowing the issues and being able to say why you made the choices you did is key.

Microservices – Sharpening the Focus

Motion Blurred London Bus

While it was not the genesis of the architectural style known as microservices, the March 2014 post by James Lewis and Martin Fowler certainly put it on the software development community’s radar. Although the level of interest generated has been considerable, the article was far from an unqualified endorsement:

Despite these positive experiences, however, we aren’t arguing that we are certain that microservices are the future direction for software architectures. While our experiences so far are positive compared to monolithic applications, we’re conscious of the fact that not enough time has passed for us to make a full judgement.

One reasonable argument we’ve heard is that you shouldn’t start with a microservices architecture. Instead begin with a monolith, keep it modular, and split it into microservices once the monolith becomes a problem. (Although this advice isn’t ideal, since a good in-process interface is usually not a good service interface.)

So we write this with cautious optimism. So far, we’ve seen enough about the microservice style to feel that it can be a worthwhile road to tread. We can’t say for sure where we’ll end up, but one of the challenges of software development is that you can only make decisions based on the imperfect information that you currently have to hand.

In the course of roughly fourteen months, Fowler’s opinion has gelled around the “reasonable argument”:

So my primary guideline would be don’t even consider microservices unless you have a system that’s too complex to manage as a monolith. The majority of software systems should be built as a single monolithic application. Do pay attention to good modularity within that monolith, but don’t try to separate it into separate services.

This mirrors what Sam Newman stated in “Microservices For Greenfield?”:

I remain convinced that it is much easier to partition an existing, “brownfield” system than to do so up front with a new, greenfield system. You have more to work with. You have code you can examine, you can speak to people who use and maintain the system. You also know what ‘good’ looks like – you have a working system to change, making it easier for you to know when you may have got something wrong or been too aggressive in your decision making process.

You also have a system that is actually running. You understand how it operates, how it behaves in production. Decomposition into microservices can cause some nasty performance issues for example, but with a brownfield system you have a chance to establish a healthy baseline before making potentially performance-impacting changes.

I’m certainly not saying ‘never do microservices for greenfield’, but I am saying that the factors above lead me to conclude that you should be cautious. Only split around those boundaries that are very clear at the beginning, and keep the rest on the more monolithic side. This will also give you time to assess how how mature you are from an operational point of view – if you struggle to manage two services, managing 10 is going to be difficult.

In short, the application architectural style known as microservice architecture (MSA), is unlikely to be an appropriate choice for the early stages of an application. Rather it is a style that is most likely migrated to from a more monolithic beginning. Some subset of applications may benefit from that form of distributed componentization at some point, but distribution, at any degree of granularity, should be based on need. Separation of concerns and modularity does not imply a need for distribution. In fact, poorly planned distribution may actually increase complexity and coupling while destroying encapsulation. Dependencies must be managed whether local or remote.

This is probably a good point to note that there is a great deal of room between a purely monolithic approach and a full-blown MSA. Rather than a binary choice, there is a wide range of options between the two. The fractal nature of the environment we inhabit means that responsibilities can be described as singular and separate without their being required to share the same granularity. Monoliths can be carved up and the resulting component parts still be considered monolithic compared to an extremely fine-grained sub-application microservice and that’s okay. The granularity of the partitioning (and the associated complexity) can be tailored to the desired outcome (such as making components reusable across multiple applications or more easily replaceable).

The moral of the story, at least in my opinion, is that intentional design concentrating on separation of concerns, loose coupling, and high cohesion is beneficial from the very start. Vertical (functional) slices, perhaps combined with layers (what I call “dicing”), can be used to achieve these ends. Regardless of whether the components are to be distributed at first, designing them with that in mind from the start will ease any transition that comes in the future without ill effects for the present. Neglecting these issues, risks hampering, if not outright preventing, breaking them out at a later date without resorting to a re-write.

These same concerns apply higher levels of abstraction as well. Rather than blindly growing a monolith that is all things to all people, adding new features should be treated as an opportunity to evaluate whether that functionality coheres with the existing application or is better suited to being a service from an external provider. Just as the application architecture should aim for modularity, so too should the solution architecture.

A modular design is a flexible design. While we cannot know up front the extent of change an application will undergo over its lifetime, we can be sure that there will be change. Designing with flexibility in mind means that change, when it comes, is less likely to be an existential crisis. As Hayim Makabee noted in his write-up of Rotem Hermon’s talk, “Change Driven Design”: “Change should entail extending the system rather than refactoring.”

A full-blown MSA architecture is one possible outcome for an application. It is, however, not the most likely outcome for most applications. What is important is to avoid unnecessary constraints and retain sufficient flexibility to deal with the needs that arise.

[London Bus Image by E01 via Wikimedia Commons.]

Microservice Principles, Technical Debt, and Legacy Systems

Is there a circumstance where the answer to Architect Clippy‘s question is “yes”? In “Microservice Architectures aren’t for Everyone” I used this tweet to underscore the observation that a team that can’t produce a well-modularized monolith is unlikely to be helped by trying to distribute the problem. On the other hand, a team (or teams) tasked with rehabilitating a “Big Ball of Mud” might well find some value in the principles behind microservice architectures.

Some of the relevant principles are cohesion and replaceability. As Dan North noted in “Microservices: software that fits in your head”:

One way to manage the mess is to maximise the likelihood that everyone knows what’s going on in the codebase. This requires two things: consistency and replaceability. Consistency implies you can make reasonable assumptions about unfamiliar parts of the application. Replaceability means you can kill code easily and replace it with something better.

Without achieving separation of concerns, any architectural refactoring effort will be an exercise in chasing fires across the codebase. A divide and conquer strategy that applies the single responsibility principle at a macro level will be more likely to facilitate identification and remediation of lower-level technical debt. Monoliths can benefit from being carved up, not because small is inherently better, but because they reach a point where independence of their components becomes beneficial, even crucial. Components that share fewer dependencies (such as a shared data store) and have independent release cycles offer a great deal of flexibility in structuring an application and the team(s) that develop it.

In “Microservices allow for localized tech debt”, Jim Plush stated: “It’s much easier mentally to tackle $10,000 of debt across 4 credit cards at $2500 each than 1 card at the full $10,000.” Even more to the point, it’s much easier to tackle that debt when you split it with three other people (teams) each working independently.

Re-writes have a well-deserved bad reputation. Shared platforms and shared data stores will often mean that the transition from the legacy system to the re-written one will be a high-risk “big bang” affair. As Edmond Lau observed in “How to Avoid One of the Costliest Mistakes in Software Engineering”, you want to “…get as quickly as possible to a state where you’re again making incremental improvements”. Getting to this state may well happen quicker when the parts are separated.

Microservices, SOA, Reuse and Replaceability

Unicorn

While it’s not as elusive as the unicorn, the concept of reuse tends to be talked about more often talked about than seen. Over the years, object-orientation, design patterns, and services have all held out the promise of reuse of either code or at least, design. Similar claims have been made regarding microservices.

Reuse is a creature of extremes. Very fine grained components (e.g. the classes that make up the standard libraries of Java and .Net) are highly reusable but require glue code to coordinate their interaction in order to yield something useful. This will often be the case with microservices, although not always; it is possible to have very small services with few or no dependencies on other services (it’s important to remember, unlike libraries, services generally share both behavior and data.). Coarse grained components, such as traditional SOA services, can be reused across an enterprise’s IT architecture to provide standard high-level interfaces into centralized systems for other applications.

The important thing to bear in mind, though, is that reuse is not an end in itself. It can be a means of achieving consistency and/or efficiency, but its benefits come from avoiding cost and duplication rather than from the extra usage. Just as other forms of reuse have had costs in addition to benefits, so it is with microservices as well.

Anything that is reused rather than duplicated becomes a dependency of its client application. This dependency relationship is a form of coupling, tying the two codebases together and constraining the ability of the dependency to change. Within the confines of an application, it is generally better for reuse to emerge. Inter-application reuse will require more coordination and tend to be more deliberately designed. As with most things, there is no free lunch. Context is required to determine whether the trade is a good one or not.

Replaceability is, in my opinion, just as important, if not more so, than reuse. Being able to switch from one dependency to another (or from one version of a dependency to another) because that dependency has its own independent lifecycle and is independently deployed enables a great deal of flexibility. That flexibility enables easier upgrades (rolling migration rather than a big bang). Reducing the friction inherent in migrations reduces the likelihood of technical debt due to inertia.

While a shared service may well find more constraints with each additional client, each client can determine how much replaceability is appropriate for itself.

Form Follows Function on SPaMCAST 327

SPaMCAST logo

It’s time for another appearance on Tom Cagley’s Software Process and Measurement (SPaMCast) podcast.

SPaMCast 327 features Tom on standups, a discussion of my “Who Needs Architects? – Navigating the Fractals” post and an installment of Jo Ann Sweeny’s column, “Explaining Communication”.

Cheers!